Applying Webb's Depth-of-Knowledge (DOK) Levels in Science Karin K. Hess

According to Norman L. Webb ("Depth-of-Knowledge Levels for Four Content Areas," March 28, 2002), interpreting and assigning depth-of-knowledge levels to both objectives within standards and assessment items is an essential requirement of alignment analysis. Four levels of Depth of Knowledge are used for this analysis.

A general definition for each of the four (Webb) Depth-of-Knowledge levels is followed by Table 1, which provides further specification and examples for each of the DOK levels in science. Generally speaking, large-scale, on-demand assessments should only assess Depth-of-Knowledge Levels 1, 2, and 3. Depth-of-Knowledge at Level 4 should be reserved for local assessment and is included here primarily for illustrative purposes.

Descriptors of DOK Levels for Science (based on Webb, March 2002 and TIMSS Science Assessment framework, 2003)

Level 1 Recall and Reproduction requires recall of information, such as a fact, definition, term, or a simple procedure, as well as performing a **simple** science process or procedure. Level 1 only requires students to demonstrate a rote response, use a well-known formula, follow a set procedure (like a recipe), or perform a clearly defined series of steps. A "simple" procedure is well-defined and typically involves only **one-step**. Verbs such as "identify," "recall," "recognize," "use," "calculate," and "measure" generally represent cognitive work at the recall and reproduction level. Simple word problems that can be directly translated into and solved by a formula are considered Level 1. Verbs such as "describe" and "explain" could be classified at different DOK levels, depending on the complexity of what is to be described and explained.

A student answering a Level 1 item either knows the answer or does not: that is, the answer does not need to be "figured out" or "solved." In other words, if the knowledge necessary to answer an item automatically provides the answer to the item, then the item is at Level 1. If the knowledge necessary to answer the item does not automatically provide the answer, the item is at least at Level 2.

Level 2 Skills and Concepts includes the engagement of some mental processing beyond recalling or reproducing a response. The content knowledge or process involved is **more complex** than in level 1. Items require students to make some decisions as to how to approach the question or problem. Keywords that generally distinguish a Level 2 item include "classify," "organize," "estimate," "make observations," "collect and display data," and "compare data." These actions imply **more than one step**. For example, to compare data requires first identifying characteristics of the objects or phenomenon and then grouping or ordering the objects. Level 2 activities include making observations and collecting data; classifying, organizing, and comparing data; and organizing and displaying data in tables, graphs, and charts.

Some action verbs, such as "explain," "describe," or "interpret," could be classified at different DOK levels, depending on the complexity of the action. For example, interpreting information from a simple graph, requiring reading information from the graph, is a Level 2. An item that requires interpretation from a complex graph, such as making decisions regarding features of the graph that need to be considered and how information from the graph can be aggregated, is at Level 3.

Level 3 Strategic Thinking requires deep knowledge using reasoning, planning, using evidence, and a higher level of thinking than the previous two levels. The cognitive demands at Level 3 are **complex and abstract**. The complexity does not result only from the fact that there could be multiple answers, a possibility for both Levels 1 and 2, but because the multi-step task requires **more demanding reasoning**. In most instances, requiring students to explain their thinking is at Level 3; requiring a very simple explanation or a word or two should be at Level 2. An activity that has more than one possible answer and requires students to justify the response they give would most likely be a Level 3. Experimental designs in Level 3 typically involve more than one dependent variable. Other Level 3 activities include drawing conclusions from observations; citing evidence and developing a logical argument for concepts; explaining phenomena in terms of concepts; and using concepts to solve non-routine problems.

Level 4 Extended Thinking requires high cognitive demand and is very complex.

Students are required to make several connections—relate ideas *within* the content area or *among* content areas—and have to select or devise one approach among many alternatives on how the situation can be solved. Many on-demand assessment instruments will not include any assessment activities that could be classified as Level 4. However, standards, goals, and objectives can be stated in such a way as to expect students to perform extended thinking. "Develop generalizations of the results obtained and the strategies used and apply them to new problem situations," is an example of a Grade 8 objective that is a Level 4. Many, but not all, performance assessments and open-ended assessment activities requiring significant thought will be Level 4.

Level 4 requires complex reasoning, experimental design and planning, and **probably will require an extended period of time** either for the science investigation required by an objective, or for carrying out the multiple steps of an assessment item. However, the extended time period is not a distinguishing factor if the required work is only repetitive and does not require applying significant conceptual understanding and higher-order thinking. For example, if a student has to take the water temperature from a river each day for a month and then construct a graph, this would be classified as a Level 2 activity. However, if the student conducts a river study that requires taking into consideration a number of variables, this would be a Level 4.

Level 1			Level 2		Level 3		Level 4	
Recall & Reproduction		Skills & Concepts		Strategic Thinking		Extended Thinking		
a.	Recall or recognize a	a.	Specify and explain	a.	Interpret information	a.	Select or devise	
	fact, term, definition,		the relationship		from a complex graph		approach among many	
	simple procedure		(cause-effect) between		(such as determining		alternatives to solve	
	(such as one step), or		facts, terms,		features of the graph		problem	
	property		properties, or variables		or aggregating data in	b.	Based on provided	
b.	Demonstrate a rote	b.	Describe and explain		the graph)		data from a complex	
	response		examples and non-	b.	Use reasoning,		experiment that is	
c.	Use a routine formula		examples of science		planning, and evidence		novel to the student,	
	or rule		concepts	с.	Explain thinking		deduct the	
d.	Represent in words or	c.	Select a procedure		(beyond a simple		fundamental	
	diagrams a scientific		according to specified		explanation or typical		relationship between	
	concept or relationship		criteria (question to		response)		several controlled	
e.	Provide or recognize a		answer) and perform it	d.	Justify a response with		variables.	
	standard scientific	d.	Formulate a routine		supporting evidence	c.	Conduct an	
	representation for		problem given data	e.	Identify research		investigation, from	
	simple phenomenon		and conditions		questions and design		specifying a problem	
f.	Perform a routine	e.	Organize, represent,		investigations for a		to designing and	
	procedure, such as		and compare data		scientific problem		carrying out an	
	measuring length	f.	Make a decision as to	f.	Use concepts to solve		experiment, to	
g.	Perform a simple		how to approach the		non-routine		analyzing its data and	
	science process or a		problem and explain it		problems/more than		forming conclusions	
	set procedure (like a	g.	Classify, compare,		one possible answer	d.	Relate ideas within the	
	recipe)		organize, or estimate	g.	Develop a scientific		domains of the content	
h.	Perform a clearly	h.	Compare data		model for a complex		area or among content	
	defined set of steps	i.	Make observations or		situation		areas	
i.	Identify, calculate, or		predictions (based on	h.	Draw conclusion from	e.	Develop	
	measure		observations)		experimental or		generalizations of the	
j.	Identify the kind of	j.	Interpret information		observational data,		results obtained and	
	information found in a		(pattern, trend) from a		citing evidence/data as		the strategies used and	
	representation (graph,		simple graph		support		apply them to new	
	table, diagram, map)	k.	Collect and display	i.	Complete a multi-step		problem situations or	
k.	Retrieve information		data		problem that involves		investigations	
	from a table or graph	1.	Translate between		planning and			
	to answer a question		tables, graphs, words		reasoning			
	(e.g., how far did it		and symbolic notation	j.	Provide an explanation			
	go?)	m.	Retrieve information		of a principle			
1.	Recall or recognize		from a table, graph, or	k.	Justify a response			
	names and uses for		figure and use it solve		when more than one			
	scientific tools		a problem or make a	1	answer is possible			
m.	Use scientific tools to		prediction	1.	Cite evidence and			
	collect & record data	n.	Summarize findings		develop a logical		TE: Level 4 activities	
	(e.g., measure distance				argument for concepts		en require an extended	
or time)		NOTE, If the law and the		m.	Conduct a designed		riod of time for	
NOTE, 1641 - 1		NOTE: If the knowledge			investigation and use		rying out multiple	
NOTE: If the knowledge		necessary to answer an item <u>does not</u> automatically			data to draw		ps; however, time	
necessary to answer an item automatically provides the		provide the answer, then the			conclusions		ne is not a	
answer, it is a Level 1.		item is at least a Level 2.		n.	Research and explain a		tinguishing factor if	
		Most actions imply more			scientific concept		lls and concepts are	
		than one decision.		0.	Explain phenomena in		ply repetitive over	
					terms of concepts	tim	le.	

Table 1: Examples for each of the DOK Levels in Science, based on Webb (Karin Hess, 2007)

3 updated 2010 © Karin K. Hess, National Center for Assessment, Dover, NH. Permission to reproduce is given when authorship is fully cited. <u>khess@nciea.org</u>

Depth-of-Knowledge as a "Ceiling" NOT as a "Target"

An important consideration of large-scale assessment design is to use the highest Depthof-Knowledge (DOK) demand implicit in an assessment limit as the "ceiling" for assessment, not the "target." Table 2 provides three examples of *possible* assessment limits with different "ceilings," that is, the highest DOK Level at which it should be assessed. When considering the highest DOK Level as the ceiling not the target, it has the potential to be assessed at Depth-of-Knowledge Levels at the ceiling, and up to the ceiling, depending upon the cognitive demand of the assessment limit. Table 2 also indicates the other DOK levels at which the assessment limit could be assessed.

Sample Science Assessment "Limit"	Ceiling	Potential DOK
		Levels
		for Assessment
Example A: Perform a simple science process or	1	1
a set procedure to gather data		
L O		(Measure temperature of
		water)
Example B: organize and represent data	2	1
collected over a period time, making comparisons		(Measure temperature of
and interpretations		water at different times or
		places)
		2
		(Construct a graph to organize, display, and
		compare data)
Example C: Answer research questions for a	3	1
scientific problem related to the environment.		(Measure temperature of
Interpret and use data collected to draw and		water at different times or
support conclusions.		places)
support conclusions.		2
		—
		(Construct a graph to organize, display, and
		compare data)
		3
		(Conduct an investigation to
		explain the effect of varying
		temperatures of the river in
		different locations)

Table 2 Examples of content indicators and DOK for Assessment Purposes

Why is this distinction between "ceiling" and "target" important?

If assessed only as the "target," level, all assessment limits with a Level 2 or Level 3 as their highest demand would only be assessed at those highest levels. This would potentially have two negative impacts on the assessment: 1) The assessment as a whole could be too difficult; and 2) important information about student learning along the achievement continuum would be lost. Multiple items covering a range of DOK levels can provide useful instructional information for classroom teachers.